If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x-32x^2=0
a = -32; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-32)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-32}=\frac{-80}{-64} =1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-32}=\frac{0}{-64} =0 $
| 3d+5=35 | | 2x+4=10-1x | | 7x+11=2x-14 | | 14d+2=30 | | 1÷10•x=(-3) | | 1x=15=72 | | 2.3x+26=3x-42 | | x+x−x= | | -12+3x=180 | | 1÷10•x=3 | | 41=12n-7 | | 6d+8=56 | | 4x*x=0 | | 2x-5=-5x+16 | | 8z-(4z+10)=3(z-2) | | -2.5494x=19.88532 | | -1=2x-x-3 | | 6x-24=-29+x | | 15n+5=35 | | -2x+1=x+6-2x | | 10n+7=17 | | 4u-49=5u-66 | | 6v-49=v-4 | | h(60)=-16^2+256 | | 8(y-5)=16 | | 16-6-5r+6r=6+3r | | V-4=6v-49 | | 40.5-5/7=x | | 100=8{4t-5} | | (0.10)(0.5)+0.35g=0.15(g+0.5 | | 22-y=9 | | 12X+3=9x+27 |